3,057 research outputs found

    Ecological IVIS design : using EID to develop a novel in-vehicle information system

    Get PDF
    New in-vehicle information systems (IVIS) are emerging which purport to encourage more environment friendly or ‘green’ driving. Meanwhile, wider concerns about road safety and in-car distractions remain. The ‘Foot-LITE’ project is an effort to balance these issues, aimed at achieving safer and greener driving through real-time driving information, presented via an in-vehicle interface which facilitates the desired behaviours while avoiding negative consequences. One way of achieving this is to use ecological interface design (EID) techniques. This article presents part of the formative human-centred design process for developing the in-car display through a series of rapid prototyping studies comparing EID against conventional interface design principles. We focus primarily on the visual display, although some development of an ecological auditory display is also presented. The results of feedback from potential users as well as subject matter experts are discussed with respect to implications for future interface design in this field

    In-depth characterisation of metal-support compounds in spent Co/SiO2 Fischer-Tropsch model catalysts

    Get PDF
    Only little is known about the formation and morphology of metal-support compounds (MSCs) in heterogeneous catalysis. This fact can be mostly ascribed to the challenges in directly identifying these phases. In the present study, a series of Co/SiO2 model catalysts with different crystallite sizes was thoroughly characterised with focus on the identification of cobalt silicate, which is the expected metal-support compound for this particular catalyst system. The catalysts were exposed to simulated high conversion Fischer-Tropsch environment, i.e. water-rich conditions in the presence of hydrogen. The transformation of significant amounts of metallic cobalt to a hard-to-reduce phase has been observed. This particular MSC, Co2SiO4, was herein identified as needle- or platelet-type cobalt silicate structures by means of X-ray spectroscopy (XAS) and high-resolution scanning transmission electron microscopy (HRSTEM) in combination with elemental mapping. The metal-support compounds formed on top of fully SiO2-encapsulated nanoparticles, which are hypothesised to represent a prerequisite for the formation of cobalt silicate needles. Both, the encapsulation of cobalt nanoparticles by SiO2 via creeping, as well as the formation of these structures, were seemingly induced by high concentrations of water

    Performance-based building and innovation: Balancing client and industry needs

    Get PDF
    One reason for the interest in performance-based building is that it is commonly advocated as a powerful way of enhancing innovation performance by articulating building performance outcomes, and by offering relevant procurement actors the discretion to innovate to meet these performance requirements more effectively and/or efficiently. The paper argues that the current approach to performance-based building assumes that relevant actors have the capacity, ability and motivation to innovate from a business perspective. It is proposed that the prevailing conceptualization of PBB is too restrictive and should be broadened explicitly to accommodate the required business logic that must be in place before actors will innovate. The relevant performance-based building and innovation literature is synthesized to support the assertion. The paper concludes with an innovation-focused definition of performance-based building

    Clinical Applications of Pediatric Pulmonary Function Testing: Lung Function in Recurrent Wheezing and Asthma

    Full text link
    Pulmonary function testing remains the gold standard for the diagnosis and management of wheezing disorders in older children and adults. Although wheezing disorders are among the most common clinical problems in pediatrics, most young children and toddlers cannot perform most of the currently clinically available pulmonary function tests. In this article, we review the different types of pulmonary function tests available and discuss the applicability and utility in the different age groups with specific reference to suitability in the diagnosis and management of wheezing disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90475/1/ped-2E2010-2E0060.pd

    Generic 3D Representation via Pose Estimation and Matching

    Full text link
    Though a large body of computer vision research has investigated developing generic semantic representations, efforts towards developing a similar representation for 3D has been limited. In this paper, we learn a generic 3D representation through solving a set of foundational proxy 3D tasks: object-centric camera pose estimation and wide baseline feature matching. Our method is based upon the premise that by providing supervision over a set of carefully selected foundational tasks, generalization to novel tasks and abstraction capabilities can be achieved. We empirically show that the internal representation of a multi-task ConvNet trained to solve the above core problems generalizes to novel 3D tasks (e.g., scene layout estimation, object pose estimation, surface normal estimation) without the need for fine-tuning and shows traits of abstraction abilities (e.g., cross-modality pose estimation). In the context of the core supervised tasks, we demonstrate our representation achieves state-of-the-art wide baseline feature matching results without requiring apriori rectification (unlike SIFT and the majority of learned features). We also show 6DOF camera pose estimation given a pair local image patches. The accuracy of both supervised tasks come comparable to humans. Finally, we contribute a large-scale dataset composed of object-centric street view scenes along with point correspondences and camera pose information, and conclude with a discussion on the learned representation and open research questions.Comment: Published in ECCV16. See the project website http://3drepresentation.stanford.edu/ and dataset website https://github.com/amir32002/3D_Street_Vie

    Expression quantitative trait loci are highly sensitive to cellular differentiation state

    Get PDF
    Blood cell development from multipotent hematopoietic stem cells to specialized blood cells is accompanied by drastic changes in gene expression for which the triggers remain mostly unknown. Genetical genomics is an approach linking natural genetic variation to gene expression variation, thereby allowing the identification of genomic loci containing gene expression modulators (eQTLs). In this paper, we used a genetical genomics approach to analyze gene expression across four developmentally close blood cell types collected from a large number of genetically different but related mouse strains. We found that, while a significant number of eQTLs (365) had a consistent “static” regulatory effect on gene expression, an even larger number were found to be very sensitive to cell stage. As many as 1,283 eQTLs exhibited a “dynamic” behavior across cell types. By looking more closely at these dynamic eQTLs, we show that the sensitivity of eQTLs to cell stage is largely associated with gene expression changes in target genes. These results stress the importance of studying gene expression variation in well-defined cell populations. Only such studies will be able to reveal the important differences in gene regulation between different ce

    Intra- and inter-individual genetic differences in gene expression

    Get PDF
    Genetic variation is known to influence the amount of mRNA produced by a gene. Given that the molecular machines control mRNA levels of multiple genes, we expect genetic variation in the components of these machines would influence multiple genes in a similar fashion. In this study we show that this assumption is correct by using correlation of mRNA levels measured independently in the brain, kidney or liver of multiple, genetically typed, mice strains to detect shared genetic influences. These correlating groups of genes (CGG) have collective properties that account for 40-90% of the variability of their constituent genes and in some cases, but not all, contain genes encoding functionally related proteins. Critically, we show that the genetic influences are essentially tissue specific and consequently the same genetic variations in the one animal may up-regulate a CGG in one tissue but down-regulate the same CGG in a second tissue. We further show similarly paradoxical behaviour of CGGs within the same tissues of different individuals. The implication of this study is that this class of genetic variation can result in complex inter- and intra-individual and tissue differences and that this will create substantial challenges to the investigation of phenotypic outcomes, particularly in humans where multiple tissues are not readily available.

&#xa
    corecore